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Introduction
Fine particulate matter (PM2.5; particles with 
aerodynamic diameter ≤ 2.5 μm) has been 
strongly associated with adverse health effects 
(e.g., cardiovascular and respiratory morbidity 
and mortality) by numerous epidemiologic 
studies conducted primarily in developed 
countries (Pope and Dockery 2006). With the 
rapid economic development and urbaniza-
tion occurring in China, severe, widespread 
PM2.5 pollution has attracted nationwide 
attention (Xu et al. 2013). However, research 
on the adverse health impacts of PM2.5 
exposure has been hindered because a nation-
wide regulatory PM2.5 monitoring network 
did not exist until the end of 2012.

Estimating ground-level PM2.5 from 
satellite-retrieved aerosol optical depth (AOD) 
data is a promising, new method that has 
advanced rapidly in recent years (Hu et al. 
2014b; Kloog et al. 2011; Lee et al. 2011; 
Liu et al. 2009). Satellite-driven statis-
tical models have the potential to fill the 
spatiotemporal PM2.5 gaps left by ground 

monitors with high-quality predictions. 
Several recent studies of the health effects 
caused by long-term PM2.5 exposure have 
adopted satellite-estimated PM2.5 levels as 
their exposure estimates (Crouse et al. 2012; 
Madrigano et al. 2013). Because sufficient 
ground PM2.5 measurements are needed to 
fit and validate statistical models, develop-
ment of models in China was difficult before 
2013. van Donkelaar et al. (2010) estimated 
long-term (2001–2006) average global 
PM2.5 concentrations at 0.1° resolution 
using the PM2.5/AOD ratios derived from 
a global chemical transport model (CTM). 
Two follow-up studies estimated the global 
PM2.5 time series from 1998 to 2012 (Boys 
et al. 2014; van Donkelaar et al. 2015). 
Both studies validated their seasonal average 
estimates only with ground observations 
mostly obtained from North America, and 
the Pearson coefficients ranged from ~ 0.37 
to ~ 0.68 (R2 = ~ 0.14–0.46). Yao and Lu 
(2014) used an artificial neural network 
(ANN) model to estimate PM2.5 levels in 

China from 2006 to 2010. However, their 
ANN was trained partially using PM2.5 
and satellite data from the United States, 
which may have introduced substantial 
prediction error.

Taking advantage of the newly available 
national PM2.5 measurements for China, 
Ma et al. (2014) estimated PM2.5 levels for 
2013 in China using satellite AOD and a 
geographically weighted regression (GWR) 
model. Using an early version of the Dark 
Target (DT) algorithm (Remer et al. 2005), 
this study adopted a relatively coarse spatial 
resolution of 50 km but did not attempt to 
estimate historical PM2.5 levels. The coarse 
resolution was a result of the limited coverage 
of AOD values retrieved by the Moderate 
Resolution Imaging Spectroradiometer 
(MODIS; http://modis.gsfc.nasa.gov) instru-
ments aboard the Terra and Aqua satel-
lites launched by the National Aeronautics 
and Space Administration (NASA). In 
early 2014, more accurate Aqua MODIS 
Collection 6 (C6) AOD products retrieved 
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Background: Three decades of rapid economic development is causing severe and widespread 
PM2.5 (particulate matter ≤ 2.5 μm) pollution in China. However, research on the health impacts of 
PM2.5 exposure has been hindered by limited historical PM2.5 concentration data.

oBjectives: We estimated ambient PM2.5 concentrations from 2004 to 2013 in China at 0.1° reso-
lution using the most recent satellite data and evaluated model performance with available ground 
observations.

Methods: We developed a two-stage spatial statistical model using the Moderate Resolution 
Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) and assimilated 
meteorology, land use data, and PM2.5 concentrations from China’s recently established ground 
monitoring network. An inverse variance weighting (IVW) approach was developed to combine 
MODIS Dark Target and Deep Blue AOD to optimize data coverage. We evaluated model-
predicted PM2.5 concentrations from 2004 to early 2014 using ground observations.

results: The overall model cross-validation R2 and relative prediction error were 0.79 and 35.6%, 
respectively. Validation beyond the model year (2013) indicated that it accurately predicted PM2.5 
concentrations with little bias at the monthly (R2 = 0.73, regression slope = 0.91) and seasonal 
(R2 = 0.79, regression slope = 0.92) levels. Seasonal variations revealed that winter was the most 
polluted season and that summer was the cleanest season. Analysis of predicted PM2.5 levels showed 
a mean annual increase of 1.97 μg/m3 between 2004 and 2007 and a decrease of 0.46 μg/m3 
between 2008 and 2013.

conclusions: Our satellite-driven model can provide reliable historical PM2.5 estimates in China 
at a resolution comparable to those used in epidemiologic studies on the health effects of long-term 
PM2.5 exposure in North America. This data source can potentially advance research on PM2.5 
health effects in China.
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by the enhanced DT (Levy et al. 2013) 
and Deep Blue (DB) algorithms (Hsu et al. 
2013) were released. Despite providing better 
coverage over deserts and urban centers than 
DT AOD, DB AOD has rarely been used 
in PM2.5 studies owing to poorly character-
ized retrieval errors in earlier versions. As 
we demonstrate in the following sections, 
including the MODIS C6 DB AOD data 
substantially increases the spatiotemporal 
coverage of model predictions in China.

In this study, we developed a high- 
resolution (0.1°, which is approximately 
10 km) statistical model to estimate historical 
ambient PM2.5 concentrations in China from 
2004 to 2013 using MODIS C6 AOD data. 
First, we present our approach to generating 
a custom “combined” AOD parameter using 
the operational DT and DB AOD values, and 
we describe our two-stage spatial statistical 
model for estimating daily ambient PM2.5 
levels. We then evaluate predicted PM2.5 
concentrations at seasonal, monthly, and 
daily levels using ground PM2.5 measure-
ments in China not included in the model 
development. Finally, we analyze the 10-year 
 spatiotemporal trend of PM2.5 levels.

Materials and Methods
Ground PM2.5 measurements. The daily 
average PM2.5 concentrations for China 

(January 2013 to June 2014) were collected 
primarily from the website of the China 
Environmental Monitoring Center (CEMC). 
We collected additional data that are not 
included in the CEMC data from the websites 
of local environmental monitoring centers 
of several provinces (e.g., Shandong, Shanxi, 
Zhejiang, Guangdong) and municipalities 
(e.g., Beijing, Tianjin). Daily PM2.5 data for 
Macao (2013), Hong Kong (2005 to June 
2014), and Taiwan (2004 to June 2014) were 
also collected from the websites of local envi-
ronmental protection agencies. Data from the 
U.S. consulate sites in Beijing (2008–2013), 
Shanghai (2011–2013), Guangzhou (2011–
2013), Shenyang (2013), and Chengdu 
(2012–2013) were also included. The web 
links for the abovementioned PM2.5 data 
sources are shown in Supplemental Material, 
Table S1. Data for Changzhou City in Jiangsu 
province were provided by the Changzhou 
Environmental Monitoring Center. Monthly 
and seasonal mean PM2.5 measurements for 
Beijing from 2005 to 2007 were obtained 
from Zhao et al. (2009). All ground PM2.5 
measurements were obtained using tapered 
element oscillating microbalances (TEOMs) 
or beta attenuation monitors, both of which 
are subject to measurement errors due to the 
loss of semivolatile components (Duncan et al. 
2014). However, because PM2.5 compliance 

in China is based on measurements obtained 
from these monitors, we used these PM2.5 
measurements to develop and evaluate our 
model. Our study included a total of 1,185 
monitoring sites in 205 cities or regions 
(Figure 1). The 2013 data were used for model 
fitting and cross-validation (CV), and data 
from other years were used to evaluate the 
predicted historical PM2.5 concentrations.

Satellite data. We extracted DT and 
DB AOD data for the period from January 
2004 to June 2014 at 550 nm from the 
Aqua MODIS Level 2 aerosol data product, 
which were downloaded from the Level 1 
and Atmospheric Archive and Distribution 
System (http://ladsweb.nascom.nasa.gov/). 
Aqua MODIS C6 includes an operational 
combined AOD product calculated from DB 
and DT AOD in three Normalized Difference 
Vegetation Index (NDVI) categories (Levy 
et al. 2013). This combined AOD is equal 
to DT AOD if NDVI > 0.3 and is equal to 
DB AOD if NDVI < 0.2. When 0.2 ≤ NDVI 
≤ 0.3, the combined AOD equals the mean 
of DT and DB AOD if both values have 
high quality assurance (QA) flags. If one of 
the algorithms reports a higher QA than the 
other, then that AOD value is used. Detailed 
descriptions of the MODIS operational 
combined AOD algorithm and the QA flags 
can be found elsewhere (Levy et al. 2013). 

Figure 1. Spatial distribution of ground PM2.5 monitoring sites. Open circles denote the sites with data available only from January to June 2014. Solid circles 
denote the sites with data available for not only 2014 but also for 2013 or earlier years. Note that many clustered sites are overlapped because of their proximity. 
The spatial resolution of the background gridded population is 0.1° × 0.1°.
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We did not use the operational combined 
AOD data set of the MODIS C6 aerosol 
product because it discarded all DB AOD data 
with NDVI values > 0.3 (see Supplemental 
Material, “Validation of Aqua MODIS C6 
AOD products”). We developed a three-step 
customized approach to combine DT and 
DB AOD. First, we performed a regression 
analysis between the daily collocated DT and 
DB AOD. The resulting regression coefficients 
were then used to predict the missing DB 
AOD in those pixels with only DT AOD and 
vice versa (Puttaswamy et al. 2014). Second, 
Level 2–validated AOD observations from 
33 Aerosol Robotic Network (AERONET) 
sites (see Supplemental Material, Figure S1) 
in China were matched with the gap-filled 
MODIS DT and DB AOD retrievals. The 
variance of the differences between gap-filled 
DT (or DB) AOD and AERONET AOD 
values for each season was calculated. Finally, 
we combined the gap-filled DT and DB AOD 
data using the inverse variance weighting 
(IVW) approach as follows:

AOD

1/Var 1/Var
AOD /Var AOD /Var

c

DT DB
DT DT DB DB

m m
m m

=

+
+

,
 [1]

where AODc is the IVW–combined AOD; 
AODDT and AODDB are the gap-filled DT 
and DB AOD, respectively; and VarDTm and 
VarDBm are the variances of the differences 
between the gap-filled DT and DB AOD and 
the AERONET AOD of season m, respec-
tively. When compared with the AERONET 
observations, our combined AOD performed 
similarly (R2 = 0.80, mean bias = 0.07) to 
MODIS’s operational combined AOD 
(R2 = 0.81, mean bias = 0.07) but had 90% 
greater coverage. Spatially, the improvement 
in temporal coverage varied by land use type 
(Figure 2). Coverage for densely populated 
southern and eastern China improved by 
50–100%. The Tibetan plateau showed the 
most improvement (~ 200%), whereas the 
Gobi and Taklamakan Deserts showed the 
least (20–30%).

To account for the impact of fire smoke 
on PM2.5 levels (Hu et al. 2014c), we down-
loaded Aqua and Terra MODIS active fire 
spots from 2004 to 2014 from the NASA 
Fire Information for Resource Management 
System (https://earthdata.nasa.gov/data/
near-real-time-data/firms).

Meteorological and land use data. Goddard 
Earth Observing System Data Assimilation 
System GEOS-5 Forward Processing (GEOS 
5-FP) (Lucchesi 2013) and GEOS-5.2.0 
meteorological data were used in this study. 
GEOS-5 FP is the latest version of GEOS-5 
meteorological data, with a spatial resolution of 
0.25° latitude × 0.3125° longitude in a nested 
grid covering China and has been available 

since April 2012. GEOS-5.2.0 is the previous 
version of GEOS-5 FP and has a resolution 
of 0.50° × 0.666°. GEOS-5.2.0 data are avail-
able from January 2004 to May 2013. We 
averaged GEOS-5 FP data to the GEOS-5.2.0 
grid to maintain a consistent spatial resolution 
across all model years. We used GEOS-5 FP 
data from 2013 for model development and 
GEOS-5.2.0 data from 2004 to 2012 for esti-
mating historical PM2.5 levels. The period of 
overlap (April 2012 to May 2013) for GEOS-5 
FP and GEOS-5.2.0 data was used to evaluate 

the influence of the change in meteorological 
data source (see Supplemental Material, Figure 
S3, Table S2, “Comparison of model perfor-
mance using GEOS-5 FP and GEOS-5.2.0 
meteorological data”). We extracted planetary 
boundary layer height (PBLH, 100 m), wind 
speed (WS, meters per second) at 10 m above 
the ground, mean relative humidity in PBL 
(RH_PBLH, percent), and surface pressure 
(PS, hectopascals) between 1300 and 1400 
hours local time (Aqua satellite overpass time 
corresponds to 1330 hours local time), as well 

Figure 2. Spatial distribution of annual mean available days for MODIS’s operational combined AOD (A), 
our IVW–combined AOD (B), and percentage improvement of data coverage (C).
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as cumulative precipitation from the previous 
day (Precip_Lag1; millimeters). Land use vari-
ables at 300-m resolution were obtained from 
the European Space Agency (ESA) Global Land 
Cover data portal (GlobCover; http://due.esrin.
esa.int/page_globcover.php) (Bontemps et al. 
2011). We extracted urban and forest cover 
data from GlobCover 2005–2006 to represent 
study years 2004–2008 and from GlobCover 
2009 to represent the years 2009–2014.

Data integration. We created a 0.1° grid 
(100,699 grid cells in total) for data inte-
gration and model development. Ground 
PM2.5 data from multiple monitors in each 
grid cell were averaged. Because the sizes 
and geographical locations of MODIS 
AOD pixels vary in space and time, a 0.1° 
grid cell may have multiple AOD pixels 
(e.g., near the center of each satellite swath), 
or an AOD pixel may cover multiple 0.1° 
grid cells (e.g., near the edge of each swath). 
Therefore, Thiessen polygons representing 
individual MODIS AOD pixels were created 
and then mapped to the 0.1° grid to spatially 
assign combined AOD values to the grid 
cells. We interpolated the GEOS-5 FP and 
GEOS-5.2.0 data to the 0.1° grid using the 
inverse distance weighting (IDW) method. 
We calculated the percentage forest cover 
and urban area in each grid cell and the daily 
total counts of MODIS fire spots for each 
grid cell using a 75-km radius buffer. Finally, 
all of the variables in 2013 were matched by 
grid cell and day-of-year (DOY) for model 
fitting. The model prediction data set was 
composed of all spatiotemporally matched 
variables except PM2.5 concentrations from 
January 2004 to June 2014. Before model 
development, the independent variables in the 
fitting and prediction data sets were centered 
by subtracting their respective mean values 
computed from the fitting data set.

Model development and validation. We 
developed a two-stage statistical model to 
calibrate the spatiotemporal relationships 
between PM2.5 and AOD. The first-stage 
linear mixed-effects (LME) model included 
day-specific random intercepts and slopes for 
AOD and season-specific random slopes for 
meteorological variables:

PM2.5,st = (μ + μ´) + (β1 + β1́ )AODst  
 + (β2 + β2́ )WSst  
 + (β3 + β3́ )PBLHst  
 + (β4 + β4́ )PSst  
 + (β5 + β5́ )RH_PBLHst  
 + β6Precip_Lag1st +β7Fire_spotsst  
 + ε1,st(μ´, β1́ ) ~ N[(0,0), Ψ1]  
 + ε2,sj(β2´, β3́ , β4́ , β5́ ) 
 ~ N[(0,0,0,0), Ψ2], [2]

where PM2.5,st is the average observed PM2.5 
concentration at grid cell s on DOY t; AODst 

is IVW–combined AOD; WSst, PBLHst, PSst, 
RH_PBLHst, and Precip_Lag1st are meteoro-
logical variables; Fire_spotsst is the fire count; μ 
and μ´ are the fixed and day-specific random 
intercepts, respectively; β1–β7 are fixed slopes 
for independent variables; β1´ is the day-specific 
random slope for AOD; β2´–β5´ are the season-
specific random slopes for meteorological vari-
ables; ε1,st is the error term at grid cell s on day 
t; ε2,sj is the error term at grid cell s in season j; 
Ψ1 and Ψ2 are the variance–covariance matrices 
for the day- and season-specific random effects, 
respectively; and N represents normal distribu-
tion. In addition to modeling season-specific 
meteorological random effects, we tested alter-
native models with day- and month-specific 
random effects for meteorological variables and 
found that this may cause over-fitting (data 
not shown).

We fitted the first-stage model for each 
province separately. Because the provinces 
in western China (e.g., Tibet, Xinjiang, 
Qinghai) do not have enough PM2.5 moni-
toring sites (Figure 1) to produce a robust 
model-fitting data set, we created a buffer 
zone for each province to include at least 
3,000 data records and at least 300 days in 
2013. We averaged overlapping predictions 
from neighboring provinces to generate a 
smooth national PM2.5 concentration surface.

The second-stage generalized additive 
model (GAM) is expressed as follows:

PM2.5_residst = μ0  
 + s(X, Y)s + s(ForestCover)s  
 + s(UrbanCover)s + εst,  [3]

where PM2.5_residst is the residual from the 
first-stage model at grid cell s on day t; μ0 is 
the intercept term; s(X, Y)s is the smooth term 
of the coordinates of the centroid of grid cell 
s; s(ForestCover)s and s(UrbanCover)s are the 
smooth functions of percent forest cover and 
urban area for grid cell s, respectively; and εst 
is the error term.

Statistical indicators, such as the coeffi-
cient of determination (R2), mean prediction 
error (MPE), root mean squared prediction 
error (RMSE), and relative prediction error 
(RPE; defined as RMSE divided by the 
mean ground PM2.5), were calculated and 
compared between model fitting and cross-
validation to assess model performance and to 
test for potential model over-fitting.

Prediction, evaluation, and time-series 
analysis of historical PM2.5. The historical 
daily PM2.5 concentrations (2004–2012) were 
estimated using the model developed based on 
2013 data, assuming that the daily relation-
ship between PM2.5 and AOD was constant 
for the same DOY in each year. Because there 
were few ground PM2.5 measurements for 
mainland China before 2013, we estimated 
daily PM2.5 concentrations in the first half 

of 2014 using the model established for 
2013 and compared them with the ground 
measurements to validate the accuracy of 
the historical PM2.5 estimations. We evalu-
ated historical PM2.5 predictions (including 
2014) at daily, monthly, and seasonal scales. 
Because some AOD-derived PM2.5 estimates 
are missing owing to cloud and snow surfaces, 
we conducted a sensitivity analysis to test 
how many AOD-derived PM2.5 estimations 
could represent the true monthly and seasonal 
mean PM2.5 concentrations. We required each 
evaluation grid cell to have at least 25 PM2.5 
ground measurements in a given month to 
calculate the monthly mean PM2.5 concentra-
tion and at least 25 measurements in each 
month of a season to calculate the seasonal 
mean PM2.5 concentration.

We calculated the monthly mean PM2.5 
anomaly time series by subtracting the 
10-year average PM2.5 concentration of the 
corresponding month for each grid cell and 
analyzed the PM2.5 trend for each grid cell 
using least squares regression (Weatherhead 
et al. 1998), which has been applied to global 
analyses of monthly mean AOD anomaly 
time-series data (Hsu et al. 2012). For each 
grid cell, we required at least six daily PM2.5 
predictions in each month to calculate the 
monthly mean PM2.5 and at least 6 months 
of anomaly data per year to be included in the 
time-series analysis.

The workflow of estimating the spatio-
temporal PM2.5 concentrations in this study 
is shown in Figure 3.

Results
Descriptive statistics of the model-fitting 
data set. A total of 63,031 data records were 
included in the final 2013 model-fitting data 
set. The overall mean PM2.5 concentration 
was 77.05 μg/m3, and the mean value of our 
combined AOD was 0.69 (see Supplemental 
Material, Table S3). These results are approxi-
mately five times higher than those obtained 
for the eastern and southeastern United States 
(Hu et al. 2013; Liu et al. 2005).

Results of model fitting and cross- 
validation. We summarize the fixed effects 
estimates, model fitting, and CV results of the 
first-stage LME model for each province in 
Supplemental Material, Table S4. AOD is the 
only variable that was statistically significant 
in all provincial models (p < 0.05). Wind 
speed, relative humidity, and precipitation 
were significant in most provincial models. 
Fire spots were not significant in some prov-
inces, most likely because these regions have 
infrequent fire activity. The CV R2 values of 
the first-stage LME model ranged from 0.64 in 
Ningxia to 0.82 in Zhejiang. The spatial distri-
bution of first-stage LME CV R2 (not shown 
here) indicates that our LME model generally 
performed better in south, east, north, and 
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northeast China than in west and northwest 
China, which have fewer PM2.5 monitoring 
networks (Figure 1).

Figure 4 shows the model-fitting and 
CV results for the first-stage and full models. 
The full-model fitting and CV R2 values 
are 0.82 (Figure 4B) and 0.79 (Figure 4D), 
respectively, indicating that this model was 
not substantially over-fitted. Comparing 
the first-stage model (Figure 4A,C) with 
the full model (Figure 4B,D), it is clear 
that the second-stage GAM model margin-
ally increased the R2 values. However, the 
GAM model did increase the slope (from 
0.77, Figure 4C, to 0.79, Figure 4D) and 
reduce the intercept (from 18.38, Figure 4C, 
to 16.57 μg/m3, Figure 4D) of the linear 
regression between the model-estimated 
and observed PM2.5 concentrations for 
2013. More importantly, the PM2.5 levels in 
Hebei Province predicted by the full model 
were approximately 20 μg/m3 higher than 
those predicted by the first-stage model; the 
predicted PM2.5 levels in Tibet were approxi-
mately 15 μg/m3 lower in the full model (see 
Supplemental Material, Figure S4) than in 
the first-stage model, showing that the spatial 
pattern of the PM2.5 levels predicted by the 
full model was more consistent with that of 
the ground observations than PM2.5 levels 
predicted by the first-stage model.

Evaluation of historical PM2.5 predic-
tions. Although our model’s predictions for 
daily level observations were poor compared 
with the historical observations (R2 = 0.41, 
n = 79,989) (Figure 5A), it performed much 
better at the monthly and seasonal levels 
(Figure 5B and C, respectively). The sensitivity 
analysis showed that more daily predictions 
yielded more accurate monthly or seasonal 
estimations (see Supplemental Material, 
Figure S5). Figure 5B shows that the monthly 
mean satellite PM2.5 calculated from more 
than five predicted daily PM2.5 concentrations 
could be a fairly accurate (R2 = 0.73) repre-
sentation of monthly PM2.5 levels measured 
from ground observations with only a slight 
bias (regression slope = 0.91). This threshold 
of 6 days per month is consistent with the 
method of a previous global AOD trend 
study (Hsu et al. 2012). At the seasonal level 
(Figure 5C), satellite PM2.5 calculated from 
more than 10 predicted daily PM2.5 concen-
trations could be an accurate (R2 = 0.79) 
representation of seasonal PM2.5 levels with 
little bias (regression slope = 0.92).

Spatial and temporal PM2.5 concentra-
tion trends. Figure 6 shows the spatial 
patterns of 10-year mean PM2.5 estimations 
(2004–2013) for China and four subre-
gions (including the Beijing-Tianjin metro-
politan region, the Yangtze River delta, the 
Pearl River delta, and the Sichuan Basin). 
The highest PM2.5 estimations were for 

the Beijing-Tianjin metropolitan region 
(including Beijing, Tianjin, and Hebei), 
followed by those for the Sichuan Basin, 
the Yangtze River delta (including Jiangsu, 
Shanghai, and Anhui), and the Pearl River 
delta. The 10-year mean PM2.5 estimations 
for the Beijing-Tianjin metropolitan region 
were generally ≥ 100 μg/m3, and the highest 

concentrations were ≥ 120 μg/m3. Similarly, 
the 10-year mean PM2.5 concentrations were 
generally ≥ 85 μg/m3 in the Sichuan Basin 
and the Yangtze River delta. The mean PM2.5 
concentrations were generally ≥ 55 μg/m3 
in the Pearl River delta. High PM2.5 levels 
also occured in the Taklamakan Desert in 
Xinjiang, an area that is a major dust source 

Figure 3. Workflow for estimating spatiotemporal PM2.5 concentrations.
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(Figure 6A). In the Supplemental Material, 
Figure S6 illustrates the seasonal patterns of 
the 10-year mean PM2.5 concentrations in 
China. Winter was the most polluted season 
(mean PM2.5: 72.24 μg/m3), and summer was 
the cleanest season (32.90 μg/m3).

Figure 7 shows that although China had 
an overall positive 10-year average PM2.5 
trend of 0.22 μg/m3 per year (Figure 7A), 
there was significant regional variability. For 

example, the Beijing-Tianjin metropolitan 
region had more rapid increases in PM2.5 
(0.75 μg/m3 per year) than the rest of the 
nation (Figure 7B), whereas the Pearl River 
delta experienced a rapid decrease (0.96 μg/m3 
per year) (Figure 7D). The PM2.5 level in the 
Yangtze River delta region remained steady 
(Figure 7C). In addition, PM2.5 levels in most 
of China increased by 1.97 μg/m3 per year 
before 2008 but decreased by 0.46 μg/m3 

per year afterwards (Figure 7A,E,F). Similar 
trends were observed in the Beijing-Tianjin 
metropolitan region (Figure 7B). The PM2.5 
level remained relatively constant in the Pearl 
River delta from 2004–2007, followed by a 
negative trend of 1.53 μg/m3 per year after 
2008 (Figure 7D).

Discussion
Compared with our previous GWR model 
(CV R2 = 0.64) (Ma et al. 2014), the two-stage 
model presented herein demonstrated superior 
performance (CV R2 = 0.79). The CV RPE 
decreased from 51.3% (Ma et al. 2014) to 
35.6% (the present study), approaching results 
seen in regional-scale studies conducted in the 
United States (Hu et al. 2014a; Lee et al. 2011). 
This improvement is particularly encouraging 
for our national model because, unlike regional-
scale models, the PM2.5–AOD relationship will 
inevitably vary in space (e.g., variable PM2.5 
composition and vertical distribution caused by 
different emission sources; variation of synoptic 
weather patterns by province). The first-stage 
CV R2 dropped to 0.63 if a single LME model 
was fitted for the whole domain, further illus-
trating that a constant daily PM2.5–AOD rela-
tionship is a valid assumption only for relatively 
small geographic regions. Using both MODIS 
C6 DT and DB AOD to obtain a custom 
combined AOD yielded a 25-fold increase 
in spatial resolution (from 50 to 10 km) and 
greatly improved the AOD data coverage. There 
were 120% more matched DB AOD values 
than DT AOD values when comparing DB 
and DT AOD data with AERONET observa-
tions (see Supplemental Material, Figure S2). 
Furthermore, our analysis indicated that in 
China, DB AOD had a smaller mean bias 
overall than DT AOD (0.01 ~ 0.05 vs. 0.13 
~ 0.18) (see Supplemental Material, Figure S2), 
enabling us to estimate lower PM2.5 levels.

To our knowledge, this is the first 
national-scale study in China to use advanced 
statistical models to estimate and evaluate 

Figure 5. Evaluation of historical PM2.5 estimations (2004–2012 and January–June 2014) at daily (A), monthly (B), and seasonal (C) levels. Because there were 
few ground PM2.5 data for mainland China before 2013, we also estimated PM2.5 for the first half of 2014 using the 2013 model and compared the results with the 
ground measurements to validate the accuracy of the historical estimations.
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historical PM2.5 levels in the years beyond 
the modeling year. The lack of concordance 
between daily historical PM2.5 predictions 
and ground measurements was caused by 

the strong model assumption that the daily 
PM2.5–AOD relationship derived from the 
2013 data remained constant for the same 
DOY in each year. This limitation of our 

model cannot be resolved without sufficient 
historical PM2.5 data to allow annual model 
adjustments before 2013. Nonetheless, 
our monthly (R2 = 0.73, slope = 0.91) and 

Figure 6. Spatial distributions of 10-year (2004–2013) mean PM2.5 estimations for all of China (A), the Beijing-Tianjin metropolitan region (B), the Yangtze River 
delta (C), the Pearl River delta (D), and the Sichuan Basin (E).
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seasonal (R2 = 0.79, slope = 0.92) mean 
PM2.5 predictions are accurate representa-
tions of the ground measurements with rela-
tively low biases and can serve as exposure 
estimates to study the health impacts of 
long-term PM2.5 exposure in China. The 
seasonal patterns showed that the most 
polluted season was winter and the cleanest 
was summer, consistent with the results of 
our previous study (Ma et al. 2014). Looking 
forward, this model can be fitted every year 
after 2013 to provide accurate daily PM2.5 
concentrations and fill the spatial gaps left by 
the  monitoring network.

Two approaches (including statistical and 
scaling models) can be applied to retrieve 
ground PM2.5 levels from satellite remotely 
sensed AOD data (Liu 2014). For statis-
tical models to function properly, substan-
tial ground data support is necessary. With 
the recently established ground monitoring 
network, we were able to develop this high-
performance spatial model for China. The 
same model cannot be applied in regions with 
sparse or no ground observations. In this case, 
the scaling approach described by Brauer 
et al. (2012) is the only applicable method.

We compared the 9-year (2005–2013) 
AOD-derived and ground-measured PM2.5 
trends for Hong Kong (no PM2.5 monitoring 

sites in 2004) and Taiwan (few sites in 2004). 
The results revealed that the AOD-derived 
PM2.5 trend for Hong Kong (–1.28 μg/m3 
per year) was similar to the trend for the 
ground measurements (–1.35 μg/m3 per year). 
However, the AOD-derived PM2.5 trend for 
Taiwan was –0.17 μg/m3 per year, which 
was much higher than that for the ground 
measurements (–0.72 μg/m3 per year). This 
inconsistency is most likely due to missing 
satellite AOD retrievals. For example, only 
34.5% of the grid cells in Taiwan had > 50% 
months with AOD-derived PM2.5 data. 
Missing AOD values are a major limitation of 
and challenge for PM2.5-AOD modeling (Liu 
2014), and developing methods to account 
for missing AOD data in China will be a focus 
of our future research.

Nonetheless, the overall regional trends 
are consistent with the environmental policy 
and regulation change in China. We found an 
inflection point for the monthly mean PM2.5 
time series around 2008. The PM2.5 level 
increased steadily between 2004 and 2007, but 
the trend reversed or became non-significant 
after 2008, especially in the Beijing-Tianjin 
metropolitan region. A recent study (Boys 
et al. 2014) also found that PM2.5 levels rose 
steadily until 2007 and then became stable in 
east Asia. China experienced a rapid growth 

of energy consumption before 2005 (Yuan 
et al. 2011), resulting in missed environmental 
quality targets between 2001 and 2005 (Xue 
et al. 2014). The growth in energy demand 
led to a stricter energy conservation and emis-
sions reduction (ECER) policy, which required 
a 20% reduction in energy usage intensity 
by the end of 2010 compared with the level 
in 2005 (Lo and Wang 2013). The ECER 
policy was implemented in late 2006, and 
the overall reduction achieved by 2010 was 
19.06% (Lo and Wang 2013). A recent study 
also showed that the production-related PM2.5 
emissions in China peaked in approximately 
2007 and dropped quickly afterwards (Guan 
et al. 2014). A sharp reduction of PM2.5 levels 
induced by this ECER policy may explain the 
inflection point.

Conclusions
The two-stage satellite AOD model developed 
in the present study generated reliable historical 
monthly and seasonal PM2.5 predictions for 
China at 10-km resolution and with little bias, 
including data from the past decade, when the 
regulatory PM2.5 monitoring network did not 
exist. Because several long-term PM2.5 health 
effects studies in North America and the Global 
Burden of Disease project are driven by satellite 
exposure estimates obtained at this resolution 

Figure 7. Time series of monthly, satellite-derived PM2.5 anomaly (μg/m3) for all of China (A), the Beijing-Tianjin metropolitan region (B), the Yangtze River delta (C), 
and the Pearl River delta (D); and spatial distribution of PM2.5 trends for 2004–2007 (E) and 2008–2013 (F). The white areas in (E) and (F) indicate missing data. The 
black lines in A–D denote the PM2.5 trends for 2004–2013, the red lines represent the trends for 2004–2007, and the blue lines represent the trends for 2008–2013. 
The PM2.5 trends (μg/m3 per year), 95% confidence intervals (CIs) in parentheses (μg/m3 per year), and significance levels (*p < 0.05; **p < 0.01; ***p < 0.005) are 
also shown in A–D.
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(Brauer et al. 2012; Crouse et al. 2012; 
Madrigano et al. 2013), our model predictions 
could greatly enhance research on long-term 
PM2.5 health effects in China. With the release 
of the Terra MODIS C6 product in early 
2015, the predicted historical PM2.5 time series 
can now be extended to early 2000, if consis-
tent meteorological and land use parameters 
are found to cover 2000–2003. From 2013 
onward, our model can provide daily PM2.5 
exposure estimates to fill the gaps left by the 
PM2.5 monitoring network in China. Finally, 
given the wider dynamic range of PM2.5 
concentrations in China compared with that 
in North America, likely due to intensive local 
sources, it is possible to further improve the 
performance of our model with detailed land 
use (e.g., road network) and emissions (e.g., 
major point sources) information, which was 
not available when this study was performed 
(Kloog et al. 2014).
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